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1 Introduction
Let’s briefly recall the setup from the last two talks: X is a smooth formal scheme overOC , where
C is a p-adic perfectoid field. Bhatt-Morrow-Scholze constructs an object AΩR in D(X, Ainf).
This object recovers several previously known cohomology theories; one comparison we will use
repeatedly is the following:

Theorem 1.1. (Hodge-Tate comparison): Let Spf R ⊂ X be an affine open. Set Ω̃R =

AΩR ⊗LAinf ,θ̃
OC ∈ D(OC). This comes with a natural map R → Ω̃R,1 and its cohomology

ring satisfies

H∗(Ω̃R) ' ∧∗RΩ1
R/OC (1)

as a graded R-algebra.

Last week, Joe constructed a commutative algebra object AΩsm
X,W , living in an ∞-category

of presheaves defined on small affine opens of X and valued in the derived ∞-category of W .
He also constructed a Frobenius ϕ̃sm

X,W acting on this object. Our goal is to first push this pair
into the world of 1-categories, and then compare it to the de Rham-Witt complex WΩ∗Xk of the
special fiber of X.

2 Passing to 1-categories
The last talk concluded with the following proposition (10.3.10): the map

ϕ̃sm
X,W : AΩsm

X,W → ϕ∗LηpAΩsm
X,W (2)

is an isomorphism in CAlg(Fun∞(U(X)op
sm, D

∞(W ))). In particular, the value of (AΩsm
X,W , ϕ̃

sm
X,W )

on any small open Spf R ⊂ X is an object in the fixed points ∞-category D̂∞(W )
ϕ∗Lηp

p .

We now use the fixed-point theorems of chapter 7 to push this into the world of 1-categories.
∗Notes for a talk in Berkeley’s number theory seminar, on Bhatt-Lurie-Mathew’s paper Revisiting the de

Rham-Witt complex.
1These are E∞ −OC-algebras.
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Proposition 2.1. (Example 7.6.5) The∞-category D̂∞(W )
ϕ∗Lηp

p is equivalent to the 1-category
ModW (DCstr),2 which consists of strict Dieudonné complexes such that the underlying complex
is a complex of W -modules and F is ϕ-semilinear.3

So the pair (AΩsm
X,W , ϕ̃

sm
X,W ) determines a presheaf AΩsm,∗

X,W on U(X)sm valued in the 1-category
CAlg(ModW (DCstr)). We claim that this functor is even valued in strict DieudonnéW -algebras
(which we’re about to define). This lets us restate the main theorem: we have an isomorphism
AΩsm,∗

X,W ' WΩsm,∗
Xk

of presheaves of strict Dieudonné W -algebras on U(X)sm. Almost all of
this talk will be spent proving this result; afterwards, we will briefly explain the completed
sheafification needed to extract the crystalline comparison itself.

Definition 2.2. A strict Dieudonné W -algebra is a strict Dieudonné algebra A∗ equipped with
a morphism of Dieudonné algebras W → A∗, where W = W (k)[0] is a Dieudonné algebra
concentrated in degree 0. We let DAstrW/ denote the category of these, viewed as a full
subcategory of CAlg(ModW (DC)).

Proposition 2.3. (10.3.14) The presheaf AΩsm,∗
X,W takes values inDCstrW/ ⊆ CAlg(ModW (DC)).

Proof. We must show that for every small open U ⊆ X, AΩsm,∗
X,W (U) is a strict Dieudonné

W -algebra. It is strict by construction, and it is concentrated in nonnegative degrees by the
coconnectivity lemma from last time.4 So the only property remaining for us to check is the
congruence Fx ≡ xp (mod V A0) for x ∈ A0. This is nontrivial, so we state it as a separate
proposition. (In fact we will prove the slightly stronger fact that this congruence holds mod
p.)

Proposition 2.4. (10.3.15) Let U = Spf R ⊆ X be a small open. Then the pth-power map on
H0(AΩsm,∗

X,W (U)/p) agrees with the map induced by F : AΩsm,∗
X,W (U)→ AΩsm,∗

X,W (U).

Proof. Idea: as is often the case when we need to actually calculate anything about AΩ, we
will do so by passing to a perfectoid (pro-étale) cover R∞. We will show that the relevant
cohomology group embeds Frobenius-equivariantly into R∞,k, and we will check that the maps
agree there.

If we unwind the definitions (and the fixed point proposition from Chapter 7), the Frobe-
nius F induces the endomorphism of AΩsm,∗

X,W (U)/p = AΩR ⊗LAinf
k given by ϕR : AΩR → AΩR

and ϕ : k → k.

Since Spf R is small, it admits an étale map to some torus Ĝd
m = SpfOC〈T±1

1 , . . . , T±1
d 〉. This

torus has a perfection Ĝd
m,∞ = SpfOC〈T±1/p∞

1 , . . . , T
±1/p∞

d 〉, and we define the perfection of R
by

R∞ = R⊗̂OC〈T±1
1 ,...,T±1

d 〉
OC〈T±1/p∞

1 , . . . , T
±1/p∞

d 〉. (3)

2Perhaps this category would be better written as Modϕ∗W (DCstr).
3This is actually proved in the generality of an arbitrary ring R equipped with an arbitrary automorphism

σ : R→ R, rather than W and ϕ specifically.
4Actually, the coconnectivity lemma tells us that H<0(AΩsm

X,W ⊗L
W W/pn) vanishes. But the generalized

Cartier isomorphism tells us that mod-pn cohomology agrees with Wn of the complex.
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From BMS, we know that this is an integral perfectoid ring, and the map R → R∞ has the
following properties:

• R/p→ R∞/p is faithfully flat.

• R[1/p]→ R∞[1/p] is a pro-étale Γ-torsor, with Γ = Zp(1)⊕d.

• AΩR ' LηµRΓ(Γ, Ainf(R∞)).5

The last item gives us a ϕ-equivariant map η : AΩR → Ainf(R∞).

A lemma from BMS gives us a Frobenius-equivariant isomorphism Ainf(S)⊗̂LAinf
W ' W (Sk)

for every perfectoid OC-algebra S. Setting S = R∞ allows us to identify the image of the
following map:

H0(η ⊗LAinf
k) : H0(AΩR ⊗LAinf

k)→ H0(Ainf(R∞)⊗LAinf
k) (4)

= H0((Ainf(R∞)⊗̂LAinf
W )⊗LW k) (5)

= H0(W (R∞,k)⊗LW k) (6)
= R∞,k. (7)

This is a ϕ-equivariant map of k-algebras, where ϕ acts as desired on the left and by the p-th
power map on the right. So it suffices to prove that this map is injective: if so, then ϕ must
also act by the p-th power map on the left. We do this using the Hodge-Tate comparison: we
can identify the source of the map as

H0(AΩR ⊗LAinf
k) = H0((AΩR ⊗LAinf ,θ̃

OC)⊗LOC k) (8)

= H0(Ω̃R ⊗LOC k) (9)
= H0(Ω∗R/OC ⊗

L
OC k) (10)

= H0(Ω∗Rk/k) = Rk, (11)

and the map turns out to be the obvious one. The map R→ R∞ is faithfully flat, so Rk → R∞,k
is too. So it is injective, and we are done.

3 Recognition criterion for WΩ

Next we give a criterion for determining whether a given presheaf of strict Dieudonné W -
algebras is isomorphic to WΩsm

Xk
. Essentially, this will say that any such object satisfying the

Cartier isomorphism must be WΩsm
Xk
.

Let A∗ be a presheaf of strict Dieudonné W -algebras on U(X)sm, equipped with a k-algebra
map

ηA : Osm
Xk
→ H0(A∗/pA∗). (12)

5This appeared at the end of Koji’s talk. It’s the main point of working on small affines: we can calculate
AΩR by passing to a perfectoid cover and computing group cohomology.
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(Recall the generalized Cartier isomorphism: for a saturated Dieudonné complex M∗, F r in-
duces an isomorphism Wr(M)∗ → H∗(M∗/prM∗). So the right-hand side is W1(A)0.) Then
H∗(A/pA) is a presheaf of cdgas over k, with differential given by the Bockstein map6, and ηA
extends naturally to a map of presheaves of cdgas

η̃A : Ωsm,∗
Xk
→ H∗(A∗/pA∗). (13)

Proposition 3.1. (10.4.3) With the notation above, if η̃A is an isomorphism, then there is a
unique isomorphism WΩsm

Xk
' A∗ intertwining ηWΩ with ηA.

Proof. By the universal property of WΩ (applied on each small open), ηA lifts uniquely to a
map Ψ : WΩsm

Xk
→ A∗ identifying ηA with ηWΩ.78 This lets us construct a diagram:

Osm
Xk

ηWΩ // H0(WΩsm
Xk
/p)

H0(Ψ/p)// H0(A/pA)

Ωsm,∗
Xk

∼
C−1
// H∗(WΩsm,∗

Xk
/p)

H∗(Ψ/p)// H∗(A/pA)

WΩsm,∗
Xk

Ψ // A∗

The top row here lives in the category of presheaves of Fp-algebras, the middle row in the
category of presheaves of Fp-cdgas, and the bottom row in the category of presheaves of strict
Dieudonné algebras. The middle row is the mod-p cohomology of the bottom row, and the top
row is the degree-0 part of the middle row.

By construction, the composition across the top row is ηA. By the universal property of Ω
(and the fact that H∗(Ψ/p) commutes with the Bockstein differentials), it follows that the
composition across the middle row is η̃A. By assumption, this is an isomorphism, so Ψ/p is
a quasi-isomorphism. But the source and target of Ψ are p-complete and p-torsion-free, so
Ψ is a quasi-isomorphism. Finally, the fixed-point theorems from Chapter 7 imply that a
quasi-isomorphism between strict Dieudonné complexes must be an isomorphism. So Ψ is an
isomorphism, and it is unique by construction.

4 Finishing the comparison
Our goal now is to prove the theorem stated earlier:

Theorem 4.1. (10.4.4) There is a natural isomorphism AΩsm,∗
X,W ' WΩsm,∗

Xk
of presheaves of

strict Dieudonné W -algebras on U(X)sm.
6The Bockstein map is the connecting homomorphism in the long exact sequence associated to the short

exact sequence 0→ A/pA→ A/p2A→ A/pA→ 0.
7The original mistakenly says AΩsm,∗

X,W instead of A∗.
8By the generalized Cartier isomorphism from my first talk, we have F : W1(M)∗

∼→ H0(M∗/pM∗) for all
M∗ ∈ DCsat. Since WΩ−1 = 0, W1(WΩ∗) = WΩ0/VWΩ0.
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Proof. We will apply the recognition criterion toAΩsm,∗
X,W . This first requires identifyingH0(AΩsm,∗

X,W/p)

and constructing a map ηA to it. In fact we will identify all H i(AΩsm,∗
X,W/p) and thereby construct

η̃A, as the method is the same. Recall that AΩsm,∗
X,W was constructed by pushing

AΩsm
X,W = AΩsm

X ⊗̂
L

Ainf
W ∈ CAlg(Fun∞(U(X)op

sm, D̂
∞(W )

ϕ∗Lηp
)) (14)

into the 1-category of presheaves of strict Dieudonné algebras on U(X)sm. It follows that

H i(AΩsm,∗
X,W/p) = H i(AΩsm

X ⊗LAinf
k), (15)

the “specialization of H i(AΩsm
X ) to the special fiber of Ainf”. We can identify this specialization

by passing through the Hodge-Tate specialization:

AΩsm
X ⊗LAinf

k ' (AΩsm
X ⊗LAinf ,θ̃

OC)⊗LOC k (16)

' Ω̃sm
X ⊗LOC k, (17)

where Ω̃ denotes the Hodge-Tate specialization.

By the Hodge-Tate comparison, on any small open Spf(R) ⊂ X, we have

H∗(Ω̃R) = Ω∗R/OC = ∧∗RΩ1
R/OC (18)

as a graded R-algebra. This is locally free and thus flat over OC . Thus we have

H i(AΩsm,∗
X,W/p)(Spf R) = H i(Ω̃∗Spf R ⊗LOC k) (19)

= H i(Ω̃∗Spf R)⊗OC k (20)
= ∧iRΩ1

R/OC ⊗OC k (21)

= ∧iRkΩ
1
Rk/k

= Ω∗Rk/k (22)

This gives us an isomorphism of presheaves of graded commutative k-algebras

η̃A : Ωsm,∗
Xk

∼→ H∗(AΩsm,∗
X,W/p), (23)

where the left-hand side is the presheaf Spf R 7→ Ω∗Rk . In particular, looking at degree 0, we
have an isomorphism of presheaves of k-algebras

ηA : Osm
X,W

∼→ H0(AΩsm,∗
X,W/p). (24)

This gives us almost everything we need to run the machine of the recognition criterion. The
only missing piece is that we don’t know η̃A is actually the cdga map induced by ηA–because
we don’t know that it respects the differential!

The rest of the proof will consist of checking that η̃A identifies the de Rham differential with
the Bockstein map. To do this, we will again use the Hodge-Tate comparison of AΩR, and
(briefly) also the proof of the de Rham comparison.
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Fix a small open Spf R, and recall that the crystalline specialization map Ainf → W sends
ξ̃ to p. This allows us to compare the Bockstein constructions for ξ̃ and p with the following
commutative diagram in D(Ainf):

AΩR/ξ̃ ' AΩR ⊗LAinf ,θ̃
OC

ξ̃ //

��

AΩR/ξ̃
2 //

��

AΩR/ξ̃ ' AΩR ⊗LAinf ,θ̃
OC

��

AΩR/ξ̃ ⊗LAinf
W

ξ̃ //

∼
��

AΩR/ξ̃
2 ⊗LAinf

W //

∼
��

AΩR/ξ̃ ⊗LAinf
W

∼
��

(AΩR⊗̂
L

Ainf
W )⊗LZp Fp

p // (AΩR⊗̂
L

Ainf
W )⊗LZp Z/p

2 // (AΩR⊗̂
L

Ainf
W )⊗LZp Fp .

The rows of this diagram are exact triangles, and the second row is just the first one ⊗LAinf
W .

So we get a commutative diagram of connecting maps from the first and last rows:

H i(AΩR ⊗LAinf ,θ̃
OC)

β
ξ̃ //

��

H i+1(AΩR ⊗LAinf ,θ̃
OC)

��

H i((AΩR⊗̂
L

Ainf
W )⊗LZp Fp)

βp // H i+1((AΩR⊗̂
L

Ainf
W )⊗LZp Fp).

The Hodge-Tate comparison identifies this with:

Ωi
R/OC

β
ξ̃ //

��

Ωi+1
R/OC

��
Ωi
Rk

βp // Ωi+1
Rk

The bottom map is the Bockstein in question, so it suffices to prove that the top map coincides
with the de Rham differential. This is done in (Bhatt’s companion to) BMS. Idea: reduce to
studying Ĝd

m by our étale map, then reduce to d = 1 by the Künneth formula for differentials.
Then do a group cohomology computation, where the non-integral degree parts go away and
the integral degree parts can be calculated explicitly with a Koszul complex.

Theorem 4.2. (Main comparison, first version, 10.2.1): There is a natural identification
AΩX⊗̂Ainf

W ' WΩ∗Xk of commutative algebras in D(X,W ) that carries ϕX,W to ϕXk .

Proof. We now have an isomorphism Ψ : WΩsm,∗
Xk
→ AΩsm,∗

X,W of presheaves of strict Dieudonné
W -algebras on U(X)sm. Passing to the derived category gives a ϕ-equivariant isomorphism
Θ : WΩsm,∗

Xk
→ AΩsm

X,W of commutative algebra objects in Fun(U(X)op
sm, D̂(W )). The objects we

are interested in are the completed sheafifications of the two sides; i.e. their images under the
functor

ĜW (−) = lim
←n

(
(−⊗LW W/pn)sh

)
. (25)

So applying ĜW to Θ proves the theorem.
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